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The Heisenberg paramagnct in one, Ixso, and three dimensions is analyzed 
by a second-order Green's function l]lcory similar to that used by Knapp 
and ter Haar. This theory, which incorporates the exact values for the zero, 
first, and second moments of the relaxation ftlncfion as boundary conditions, 
yields results satisfying the rotational symmetry of the paramagnetic region 
as well as the principle of detailed batancc. We lind that our predictions for 
equal time properties in the classical limit arc identical with the RPA Green's 
function theory of [.iu as well as the spherical model results of l.ax. The 
quantum limit is analyzed, and our predictions for the I:T series coefficients 
for both internal energy and susceplibilit,, arc compared with exact results. 

KEY WORDS: Heisenberg paramagnet; Green's functions; relaxation 
functions. 

1. I N T R O D U C T I O N  

The l lciscnberg model has been extensively sludicd during the last several 

years using the techniques of double time temperature-dependent  Green 's  

functions.  Formally,  the problem of finding the .~olution for magnetizat ion 
and t ime-dependent  spin-spin  correlation functions is reduced to the deter- 

ruination of the solut ion to an infinite set o1" coupled first-order differential 
equations.  The development  of a tractable formalism necessitates a decoupling 
approximat ion.  
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A majority of the decoupling procedures which have been utilized on 
the Heisenberg model have been made at the first stage of the calculation, 
since further delay introduces an enormous mathematical complexity to the 
problem. The random phase approximation (RPA) of Bogoliubov and 
Tyablikov ~l-4J has been used extensively in many slightly modified forms. 
A short and somewhat representative sample of these theories is given by 
Refs. 1-15. 

These first-order theories are largely designed to apply to systems in the 
ordered state, and therefore the failure of the excitation energies to agree 
with experiment and the exactly knoan properties of the Heisenberg model 
in the paramagnetic region is perhaps understandable. One finds thai all 
these theories, with the notable exception of Lines's, ~l~j produce excitation 
energies for which the scaling with temperature is independent of wat~e 
vector. A further examination of these theories shows that :ill spin wave 
energies are vanishingly small in the paramagnetic region. Both neutron 
diffraction ~'~-~ and Raman ~-0~ experiments on magnetic systems reveal 
that short-wavelength excitations remain tinite and continue to propagate 
well into the paramagnetic region. This phenomenon is most apparen! m 
one- and two-dimensional systems. 'ae ~ '  Of" the literature citedJ z -~  only 
Lines ~4~ has a first-order Green's function theory for the paramagnetic 
region that is even qualitatively correct and his approach, which is pheno- 
menological in nature, leaves obscured tile underlying basis for the theory. 

In Section 2, we define both the Green's functions and the corresponding 
relaxation functions which are pertinent to the iteisenberg model, as well 
as quote some of  the spectral relalions thai are developed in tile litera- 
ture. r By using arguments based oil tile invariance properties of the 
Heisenberg paramagnet as well as exact moments of the relaxation fimction, 
we conclude that a second-order Green's function theory is the best approach 
because the second-order theory i~lcorporatc~ exactly the zero. first, and 
second moments of the relaxation function as boundary conditions for the 
Green's function equation ensuring nonvanishing excitation energies in the 
paramagnetic region. 

In Section 3, we describe a decoupling of the Green's function equations 
which is a modification of  the procedure used by Knapp and ter Haar ~'~ 
and is similar to theories used by' RichardsJ '-':'~ ILo and Halley, ~a~ and 
ourselves.C=7~ 

In Section 4, we make a further approximation to the Green's function 
equations obtained from the truncaiion used in Section 3. We tentatively 
identify this approximation as the classical limit while deferring the proof 
to Section 6. The equal time properties predicted by' our theory in the 
absence of a magnetic field in tile ckissicai limit are shown to be identical 
with the predictions of  the RPA theory of l..iu. ':'~ It is also found that our 
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thermodynamics reduces to the spherical model results in the classical 
limit, as did the theory reported by Lo and HalleyJ :~~ 

In Section 5, we examine quantum effects that wcrc neglected in the 
classical limit approximation of Section 4. In particular wc derive corrections 
to the Curie and N~:el temperatures predicted by the RPA and spherical 
models by our theory to order I / S ( S  :- I). The critical value of the nearest- 
neighbor spin--spin correlation function i~ also calculated to the same level 
of approximation. Comparisons of our results with ( l /T)  series results are 
given in Tables 1 and II. 

Finally, in Section 6, we examine the 1:7" series expansion for the 
susceptibility and nearest-neighbor correlation function predicted by our 
theory, and as a by-product obtain the 1/7" series expansions for the spherical 
model, the RPA theory, and the RPA theory of Liu. Our theory is found to 
give a much more accurate description of the high-temperature thermo- 
dynamics than either the spherical model or the RPA theory of Liu especially 
for small spin values, as may be seen by an examination o1" the I / T  series 
coefficients given in Appendices A and B. 

2. G R E E N ' S  F U N C T I O N  T H E O R Y  

The usual retarded and advanced 
Zubarev ~2"~ are defined by 

G~(t) --  ((A(t); B(0)3~,~ :o ~iiO(_-[-_t)([A(t), BI0)]) 
ct o~ 

where 

Green's functions reviewed by 

O(t)= 1, t > 0 ;  O(t)=O, t < 0  (2) 

[A, /q  = Ate Z~A (3) 

A ( t )  =- e ~n' A(O) e - ' m  (4) 

'~'") = Z -l Yr(e -tin'' ') (5) 

/3--i /k, ,-r  (6) 

and H is the Hamiltonian defined by 

H =  - - J ~ S j ' S j . ,  (7) 

where J is the exchange constant in units of energy (we use units where 
Planck's constant is equal to 2rr) and where the sum over the spin index j 
ranges over the positions of all N lattice sites, while the sum over d ranges 
over the set of nearest-neighbor vectors only. 
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Upon taking the time derivative of (I) and utilizing (3) and (4) in the 
resulting equation, one finds that both advanced and retarded Green's 
functions satisfy 

i (O/~t)~A(t);  B(O))L. =- <[A. 1t]). ~(t) . <~I[A, Ill(t); B(0))/.,. (8) 
a ( t  

We have used the convention that all opcrator.~ to the leff. oF the semicolon 
in the Green's function appeariilg on lhc right-hand side of (8) are to be 
evaluated at the time t. We define the image, i((o) oF an arbitrary function of 
the time A(t )  under the Fourier transform operator F(oJ; t) via 

//'(co) = F(co; t) A( t )  -= (I/2~r) ! dt e '~' A( t )  (9) 

It is convenient to define a relaxation function R(co) by 

R(o~) --  i~o-'[F(co ! i~; t)(,',.(t) l:'(a, -- ie; t)G,,(t)] (10) 

The correlation function (B(O)A( t ) , ,  which is of ultimate interest, is given 
by the spectral relat ion c-"~ 

<B(O)A(t)) == f." '(t; co)o)R(oJ)/'(e~ . . . . .  1) (l i)  

where F-"(t; ~)  is the inverse F'oulier transforln operator. 
The relevant Green's functions for the Heisenbcrg model are given by 

G,,,,(i, t) . . . .  !ilS/"(t ): S,)"(O)} (12) 

where m and n are labels which may lake on any of the values F-, --, x, y, 
or z. To each Green's function defined by (12) there corresponds a Green's 
function defined by 

G,, , (k ,  t )  l~.,G,, , ,(j  t) (13) 

where the Fourier lattice transform operator I.).:, is defined by 

Ft . ; j  . . . .  ~_~ (~iJ,. J . . .  

/ 

(14) 

To each Green's function detined by 121 and (13) there corresponds a 
relaxation function detined by (10). The momenls of the relaxation f'unctions, 
which we denote by <~ok") ...... are defined by 

7 .  . r ,  

f e,,,~ (151 
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These moments are related in an important ~ay to  the boundary conditions 
on the Green's functions at time t =. 0. We thld 

(~o")R(t=0) = (ieiOt)~R(t),=.,, :: i(iL'ii't)" ~G,(t),  ,,,- (16) 

where R(t)  is the inverse Fourier translk)rm of R(r detincd by ([0). 
We are now in a position to determine what is ~rong with the use of  a 

first-order Green's function truncation in the paramagnetic region. We have 
that G ..... (k, t -- 0-) . . . .  2i(S0'). Therefore it follo~vs from (16) that 

(~oxiS+_ = 2(So:;~/R~..(k. t : 0) ::-.~ .~S,,:,,X~. (17) 

where ~c have used the fact that ~R~.._(k, t O) ..... R~(k ,  t =--= 0) .... Xk in the 
paramagnetic region due to the spherical symmetry. ~'-'~;~ The function Xk is 
just tile wavelength-dependent paramagnetic susceptibility. If one insists 
that the Green's functions have only one pole corresponding to the magnon 
energy, as is the case in the literature cited," TM then the magnon energy 
must be given by 

I7/,: = ( ~ : ) .  "S ' :  ; . . . .  , ' .  ,X ; .  (18) 

as a rest l l t  o f  (17). One  mus t  in fact  solve t i le Green 's  f unc t i on  equa t ions  

in the limit of  vanishing magnetic field in o rde r  to  get a solution since ','So:i> 

is identically zero when the magnetic field is identically zero. 
It is clear, however, that the Green's function for G,._(k, t) must have 

two poles in the paramagnetic region (to the extent that the concept of 
elementary excitation is valid) since the operators /q.:j S /  and Fk.~ S~- in 
the absence of a magnetic field must by symmetry have equal probability 
for creating and destroying a magnon. Therefore (17) should be interpreted 
as a measure of  the asymmetry in the location of the poles in the Green's 
function corresponding to the propagation o1" a magnon and a magnon hole. 

We now consider the information contained in the boundary condition 
for the second moment  of the relaxation function in the paramagnetic 
region. We obtain 

('~:)=~ = 0; (~k2)~. =: 2,l(y,~--- y,.) So~S<i ~ + So"S,P?/Xk (19) 

from the relaxation function R~(k ,  t). The lattice site d appearing in (19) 
refers to any one of the nearest-neighbor sites of the site 0. The function y,: is 
defined by 

Yk = .~ cxp(ik �9 d') (20) 
c/ '  

where the sum over d'  ranges over the set of nearest-neighbor displacement 
vectors. Notice that (.19) is consistent with a relaxation function given by 

Rz~(k, t) = XI: co~(E:t)  (21) 
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where 

E~ a : (wk")~.~ =-- 2J(},0 -- "y~.-)(,S',,rS,t ~ -; S,"S,,")/X~. (22) 

Equation (21) is obtained by assuming that l'or a given k, the relaxation 
function contains a pure negative frequency corresponding to tile presence 
of a magnon of energy &< and a positive fi'equency component corresponding 
to the presence of a magnon hole of  energy 1"~.. The relative amplitude 
and phase of the two frequency components are fixed by the principle of  
detailed balance. More explicitly, Marshall and Lowde ~2r'~ have shown that 
for crystals with inversion symmetry, R, : ( k ,  t) must be an even function of t, 
which they show is equivalent to the statement of detailed balance. Finally, 
(19) determines the energy of the excitations to be given by (22). 

It must be emphasized that (2i) and (22) are meaningful only to the extent 
that it is possible to describe the behavior oi" the Heisenbcrg paramagnet 
in terms of  elementary excitations. The experimental data a'~ 2<, suggest this 
assumption is realized most strongly in systems of low dimensionality. 
In particular, the experimental measurement of the excitations of  T M M C  
(a one-dimensional Heisenberg paramagnet with S -=-= 5/2 and J . . . .  7.7':K) 
have revealed the existence of elementary excitations obeying 

E~,. =:- (6. I meV)[ sin k ,  (23) 

over the entire Brillotain zone at 4.4 K .  Cej~ We have elsewhere ~-~7~ shoun in a 
preliminary account of  the present Green's function theory that our Green's 
function theory is able to explain the cxcitalion spectra given by (23) for 
T M M C  at 4.4~ 

In Section 3, we shall use a truncation procedure on the Green's function 
equations at second order. This truncation scheme is a modification of a 
scheme used earlier by Knapp and ter Haar ~2~J and is similar to a scheme 
also reported by Richards ~"9~ and Lo and Halley. ~a~ We choose a second- 
order decoupling scheme because the second moment sum rule for the 
rclaxation function given by (19) is incorporated into the Green's function 
as a boundary condition. Furthermore, the symmetry of thc second-order 
equation of motion for G=~(j: t) guarantees that the condition of detailed 
balance is satisfied, and this feature is easily retained in the truncation. In 
fact, our theory has a relaxation function given by (21) and excitation 
energies given by (22). These equations are supplemented by (42)-(46), 
which define a self-consistent scheme for determining ihe unknown sus- 
ceptibility and nearest-neighbor correlation function appearing in ~21) 
and (22). 

One may justifiably ask why we should use a theory having a relaxation 
function given by (21) in three dimcnsions at high temperature when both 
experimental and theoretical studies indicate that the relaxation function 
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should be Gaussian in w for large values of k and l.orentzian in (~ for small 
k. 'z'~ The answer is that the dynamics predicted by (21) is certainly un- 
realistic; however, the static properties are determined by only low-order 
moments <(~o~ ~) of the relaxation function and these are correctly represented 
in our theory. For example, We find from (11) that 

Fk;j(S,,~Sj ~) # :- xk(l  ~< c,/3 @~,,. :: -!- c.,flz(o, A z~:. t . . . .  ) (24) 

Similar remarks hold for the Heisenberg paramagnet at high temperatures 
in the cases of one and two dimensions. 

3. D E C O U P L I N G  O F  T H E  E Q U A T I O N S  OF  M O T I O N  

The Green's function Gz~_(j, t) is found to satisfy a second-order equation, 

(i a/at) 2 G~( j ,  t)  

- ,  2 J  y .  <so~sd �9 + s g s g > ( , ~ . o  - ~,, ,,.,,) ~(t) 
d 

+ 4J  2 ~ ( ( (S j ,  Sj~ dS~+a., ,c -- S j ,  S,,~,.a.S~+d)(t); S,,"(0)~ 
d,d" 

7- 4J 2 ~ (((St+a * Sj+a'S~ ~ - S~:,,,S~ * Ss~,,,)(t); S0~(0)3> (25) 
d,d" 

after using (8) two times and simplifying the resulting equation with the aid 
of the spin angular momentum commutation relations. The operation 
S 6 . Ss2 appearing in (25) is presently to be interpreted as the usual dot 
product of two vectors. Knapp and ter Haar t'~ proceeded to approximatc 
the Green's functions on the right-hand side of (25) by 

((Sjz * Ss,S~a(t); So'(O)))~ '~  <St, * S , . ,  G~,(.js, t) (26) 

((S~. S 6 , S~,(t); S0'(0)) ~ "~S~, * S,~) G~(.j.s, t) (27) 

Knapp and ter Haar described this truncation as a natural generalization 
of the first-order RPA decoupling scheme. Wc refer the reader to their 
paper for a discussion of  the ambiguities that arise in their truncation 
procedure. 

Our truncation differs from that of Knapp and ter Haar in that ~ve 
notice that the Green's functions appearing on the right-hand side of (25) 
which involve only z-component spin operators when summed yield 
identically zero for all values o f j  and t. Therefore we interpret the operator 

S ix ,  Sj~ as 

s~, , s j ,  = s y s ~  . ~ s ~ ,  (28) 
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and (25) is still exact. We then truncate the Green's  function equations 
using (26) and (27). 

We now examine the reason we think that (26) and (27) are appropriate  
when the * product  is defined by (28) and are not appropriate  when the .~ 
product  is interpreted as the ordinary dot product.  For n -: x or y (but 
not z), we use 

~r~s~s~.,(t);. s g ( 0 ) >  -.~_ ,~s"s"~,, ,... c;...(i~.. , t} 

" . . . . . .  / S  ''c='" G , : ( A  t)  .5,,5,:,/O',,..{/z, t) i .. ~ , j : /  . , 

.... \~J,~ J.:/ (;=(.ia,  t )  (29) 

The equality in (29) follows from the fact that both the correlation functions 
(S~;Sj~> and (S~;S~,> are rigorously zero for ,, :--: x or y (but not :). This 
may be seen most  easily if the trace is taken in a basis in which the states 
are eigenstates o f  the z-component  o f  total spin. Similar arguments  apply 
to (27). 

We will utilize the symmetries of  the isotropic Heisenberg model with 
nearest-neighbor interactions, periodic bouudary conditions, and equivalence 
o f  nearest-neighbor sites to obtain a compact  form for the truncated equations 
o f  motion contained in (26) and (27). We have 

and 

-* �9 ~.v,, s "~ : < s 2 s ~  <s~. ,.: ,, ~. ( ,S j ,&, )  = , , . , , .  ,.:2 S =' (30) 

and 

<(S~.. aS) * Sj+a,(t); So:(O)? ........ 2/~o ~ G : : ( j  " d, t}  (33} 
d , d '  

(&=&=> ---: <s,~.s/;>, d - / :  d ' ;  ~ <S) , , , cS/ ; ,  -: r,, Y. (S~,, . ,S,/" 
d , d "  d 

I31) 

where h and J2 are arbitrary lattice vectors, cLd'. and d I are nearest-neighbor 
displacement vectors, and Y0 is the number of nearest-neighbor displacement 
vectors. 

It is important to retain th{: fact thai {26).and (27) are only approximalely 
true in our truncation since there will be more equations than there arc 
unknowns, which can easily icad to a system of equations for which there 
exists no solution. In anticipation of the problems that wil l arise, we treat 
(26) and (27) as exact when !j~ .... /'~ - id',. This leads to 

( (S j*  Sj~.~S~d+,t.(t); S,,"(0) .- 21 ~ G::{j .- d - d',  t) {32.) 
d , d  ,t.,1" 
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where 

H m ,  cver, when i J l - J = " ~ :  
(26) and (27) unless J: =-J.- .  We instead make the approximat ion  

and 

where 

. /  - ,/5',:.~;~,> (34) 

4',, we do not demand a strict equality in 

<(.Sj * Sj+a~a'S~.d(t):. S,,:(O)),. 2~,,,,,. ~ G=Aj ~ d, t) (35) 

,~(Sj+,~ * Sj+a, j (t), S,.:(O)II. 2gy,'~G~:( i, t) (36) 
fl, d 

cg - y ~ .  (S,,=S~,,,,,, (37) 
d 

and where c is a constant  tha~ may deviate From unity. After combining 
(32) (37) ,  we lind 

---(#z/at2) G=(j, t) = 4 J S ( t ) J ' ~  (~.,, - 6~ ,~.o) 
d 

+ 8J  z Y. (;~l j :- j ' ,  t ) 
j ,  

x ~ (./3~ . , ~ , ,  . . . . .  . f S / . , ,  -i-- .~,'?~/.o - -  g S , . ~ )  (38) 
d,d' 

We see that  (38) is a difference equat ion which is easily solved by use of  
the Fourier  lattice t rans form defined by (14). We obtain 

G~(~o(k, t) = ~40C[:t )  Jf(yo ..... 7,.)[sin(E~-t)]/Ek (39) 

where 

(40) E~, 2 = 8P(y0 -- y~.;(.e7,,- f~.)  

The  relaxation function is found to be 

R~z(k, t) :~ f [cos(E~t)]/2J(gy. --./y~} (41) 

upon substitution of (39) into (10). Tim wavclength-dependcm susceptibility 
Xk is identified from (41) and (21) as 

X~- ~: f./2Jf.~y. �9 /~,~,) (42) 

The  susceptibility given by (42) is of  the O r n s t e i n . Z e r n i k e ' ~  form. The 
present  theory will be complete  once the temperature  dependence of  the 
parameters  f and g are determined.  
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Upon the substitution of the Fourier transform of (41) into (11), we 
obtain 

(So*(O) &*(t)), :-= F~{�89 iE,.t)];sinh(~[3/z'k)l (43) 

for the time-dependent spin--spin correlation functions. The parameters 
./'and g are determined from (43) by the self-consistency relations, 

and 

where 

1 /W(k ,  T) 
S(S -,- 1)/3 -- (S'o~(0) S,?(0)) :-: )~N "7.3~ 

~ 2 ~  ~0 ~ 

I ly , .v(k,  7) 
/ = 2 <So (O  s,, co)j : 2 TJi-~-TT :-: : I -i~)-7,, J ,  

(44) 

(45) 

V(k, T) :--: ~fi&. coth({flE~.) (46) 

There is an additional self-consistency equation that determines the constant 
c given in (37). It is 

1 .I~,,~- V(k, "f) cg = yo z ~ (So~(O)S*~,,r(O))" : fl/~ ~ ~ ( g ~ q ~ _ - - ~  (47) 
d . d '  c �9 

Our Green's function theory is now complete. We shall find out how 
well this theory, which is contained in (40)-.(46), describes the behavior of 
the Heisenberg model. One can determine qualitatively the behavior of the 
theory by examining the classical spin limit, which we now consider. 

4. C L A S S I C A L  L I M I T  

We now proceed to recove: the classical Imit for the equal time properties 
of the present theory and show that [ile thermal properties of our theory 
are the same as those predicted by the RPA theory of l,iu ~:'' as well as the 
spherical approximation on the Hciscnbcrg model by Lax. 'a:~' The description 
of the equal time properties is contained in (40), (44)--(46), and the equation 

1 s . f [exp(- - ik  .j)] V(k, T) 
<sg(0) s,,(0)> ~ )~- ~ ...... -~2i~7 -/~;;-) . . . . . .  

(48) 

which we deduced by substituting (42) into (43) and using the inverse of the 
Fourier lattice transform operatoc defined by (14). In Section 6, we will 
prove that the classical limit corresponding to this system of equations is 
given by (44) and (48) where one uses V(k, T) = 1 instead of the expression 
given by (46). 
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Our  theory in the classical limit has only one unknown parameter ,  
.[/g. One can also use X, determined from (42) with k :-= 0 as the 

and 

s ( s +  1) ._: ~ v 
3 fiN ~,,, X; ~ 2 ' : , I  (Yo ..... Y,,) 

respectively. 
The equal t ime spin-spin  corrclation funclums which one obtains 

from (49) and (50) are identical with those obtained by Liu ~sl when he 
restored the spherical symmetry  to the RPA Green ' s  function theory for the 
quan tum Heisenberg model  in the paramagnet ic  region. It remains an 
unanswered question why the classical limit for the equal t ime spin-spin 
correlat ions given by (49) and (50). which were calculated by a second- 
order  Green ' s  function theory with finite frcquencies given by (22), are 

(53) 

h 
unknown parameter .  The classical limit of  (48) is then 

1 exp( ik . j)  
<So"(0) S, ,(0)) : :  ~ ;~i~- t- -.i7~-j(-yo2---TT ) (49) 

wherc the susceptibility )r is deternain.~.d from 

S ( S - F  1 )_ .  1 v I 
(50) 3 -- /~;~ ,%4 2J(y,, �9 -/,) 

which is deduced from the classical limit of  (44). 
In the case of  J . . . . .  ! J I, it is more reasonable to express (49) and (50) 

in terms of  the staggered susc,;ptihility X. when it can be delined. More 
precisely, when a lattice is decomposable  into t~.o interpenetrating sublattices 
with the proper ty  that  nearest  re ighbors  of  a point on one sublattice all lie 
on the other  sublattice, then one may define a staggered susceptibility. Then 
there exists at  least one wave vector ko such that exp(ik0 "j)  =- -i:l for all 
lattice sites j. The lattice points for which exp(ik 0 - j ) : . .  I are on one 
sublattice, while the points for which exp(ik, ../) =- . . . .  1 are on the other 
sublattice. The staggered susceptibihty is then determined from (42) by 
X.~ = Xk 0. The impor tan t  wave vectors when ,I = - i  J '  are those wave 
vectors for  which [ k -  koi is srnad. Wc detine a new wave vector q by 

q = k --  k0 (51) 

so that (49) and (50) now become 

I ,~ cxp [ - - i (k ,  t q ) j ]  (52) <sg(o) s/(o)> = 3~; ' ,  -~ r - -T~ - - ( r~ i - - : -  r,,) 
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identical with the equal time spin-spin correlations obta ined by Liu from 
the lirst-order RPA Green's function approximation in which the excitation 
energies become zero for all wave vectors in the limit ol" zero magnetic lield 
in accordance with (18). This identity strengthens ttle parallelism between 
the present theory and the RPA theory mentioned by Knapp and ter t~laarJ ~s~ 

About ten years ago, Tahir-Kheli and ter t laar  (~ pointed out that their 
RPA Green's function theory produced the samc critical temperatures as 
the spherical model of  Lax. (~ We nm~ indicate that the equal time spin- spin 
correlations predicted by tLe RPA Green's function of Lie are the same as 
those predicted by the spherical model o1" Lax. This identity is most easily 
obtained by a treatment of  the Heisenbr model in the spherical approxima- 
tion paralleling the development Icading to Eq. (36) in the paper by Berlin 
and Kac (331 devoted to the 'r approximation to the lsing model. 
The transition to the spherical approximation results for the Heiscnberg 
model from the spherical model r~sults of Berlin and Kac requires only a 
redefinition of the symbols since the new degree~ of freedom S / a n d  S/ '  are 
not dynamically coupled to S / i n  the spherical approximation. It rernains an 
unanswered question why the equal time spin spin correlation functions 
predicted by the present theory are equivalent to both the spherical model 
of  Lax and the RPA theory of Lie. This identity, however, gives us an 
insight into the behavior of  our model in one, I~,,o, and three dimensions. 

The classical limit of  our theory ;J.~ ,,lelincd by (49) and (50) predicts that 
a transition from the paramagnetic state to a ytate ol  long-range order is 
possible only in three dimensions, ~:~:' in agreement with the proof of  Mermin 
and Wagner. "~n For J > 0, on,~ finds: a second-order phase transition From 
the paramagnetic to the ferromagnetic state: spin .spin correlation functions 
oF the Ornstein-Zernike (:~l~ form in the critical region"l:'; susceptibility 
obeying a ( T  .... T,.) '~ law in the critical region ''~:~ instead of a (T - 7~.) ~,3 law 
predicted by early 1 /T  series metiaods; naj and the predicted specific heat 
remains finite at T~, in disagreement ~xith tlle 1/T series resuhY ~'~ For 
J --< 0, one must distinguish between t~o dislinct cases. For those lattices for 
~'hich it is possible to detine a staggered susceptibility, one finds a transition 
from the paramagnetic state to the antil'erromagnetic statc only in the 
three-dimensional case, in agreement with the theorem of Mennin and 
WagnerJ a4~' The critical properties are analogous to those for the ferro- 
magnetic transition, as is evidenced b} ihe isomorphism that exists between 
ttle set of  equations (49) and !50) and the ~et (fl" equations (52) and (53). 
When J < 0 and X~ is undefined., one does not generally lind a transition 
even in three dimensions, as is evidenced by the ti~ce-centered cubic latticc 
with only nearest-neighbor interactionsJ :~;~ In the case of both positive and 
negative exchange constants J, one hnds that the classical limit is asymploti- 
cally exact at high temperatures. (" 
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In the development that is to follow, we will need the RPA expressions 
for the Curie and N6el temperatures tirsl obtained for arbitrary spin by 
Tahir-Kheli and ter Haar. r The expression for the Curie temperature in 
the RPA, which we denote by ~ c ,  is easily obtained from (50) by sclting 
X. -- oo, while the expression for the Necl temperature in the RPA, which 
we denote by 7 ~ ,  is easily obtained fi'om (53) by setting X., = ~'. Both 
results may be expressed as 

..... 3kB (-N- .. y0 - Y~.' (54) 

It should be recalled that we introduced a parameter c in (37) which may 
differ from unity if necessary to ensure the existence of a solution l b r f a n d  g. 
One can show that in the classical limit, c has the unique solution of unity 
and hence (37) is redundant. The situation is quite diffevent in the quantum 
case, which we now consider. 

5. Q U A N T U M  R E S U L T S  

We consider the thermodynamics predicted by our Green's function 
theory in the quantum case, which, is defined as the solution to (40), (44) (46), 
and (48). The solutions to these equations have the same qualitative features 
as the solution in the classical limit. In parlicuhtr, one tinds that X, and X.~ 
are decreasing functions of  tcmpcralurc with )(,, =-X.~ ::= 0 at infinite 
temperature and with Xo ...... ~o at the Curie temperature [which implies 
that . / '  : g due to (42)] and with X.~ ~/., at the Ndel temperature [which 
implies that/" -- - -g  due to (42)]. One noa. finds from (44) that in the quan- 
tuna limit, the Curie temperature, which we denote by To.  and the N~Sel 
temperature, which we denote by TN, arc given by 

. ~--I 
Tc : [ 2 1 J ~ S ( S - ! -  1)/3/,'B] 'l(1..'N)~ IV(/,-, Ic)/(70 Y~.)]~ 

N I,. N 

(55) 

where one choses the minus sign for Tc and tile plus sign for TN. It no 
longer follows that the Curie and Neel temperatures are equal. The reason 
for this is that excitation energJes appearing in the detinition of V(k, T) 

given by (46) are quite different. In facl, one has from (40) that 

/:2k(rc) =: 4Jfx/2(Yo - Y~) ,  s " 4i J /` 1 . ' f i (~y ,02  _ _  72)1 2 (56) 

Notice that at Tc ,  the excitations have lhe same \vavclength dependence as 
low-temperature ferromagnetic magn(;ns, while at TN, the excitations have 
the same wavelength dependence as low-temperature antiferromagnetic 
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spin waves. The facts that the staggered susceptibility becomes inlinite anct 
the excitation energies have a higher periodicity in k-space consistent ~ ith 
a sublattice picture stongly suggest the appcarance of aniiferromagnetism 
at lower temperatures, altl'~ough we arc unable to explicitly demonstrate 
this since the assumption of a spherically symmetric phase is no longer 
valid below TN. Likewise, we can only suggest the existence of the ferro- 
magnetic phase below Tc .  

Rushbrooke and Wood ~3~ have used a I / T  series expansion for the 
susceptibility and staggered susceptibility to determine estimates for the 
Curie and N~el temperatures. The j  lind 

(T~ w T Rw,~-~"  ~, --  c U ' c  "-=- 0.6.~;v,S(5 -': l) ~57) 

where 7~ w and Tc Rw are their estimate5 for the N6el and Curie temperatures, 
respectively. One should therefore expect a different expression for the 
Curie and N6el temperatures, as is e~.idcnced by (55). 

It will now be shown that our Green's function theory in the quantum 
limit is consistent with the tiaeorem of Mermm and Wagner, "~> which states 
that a phase transition to the ferromagnetic state or antiferromagnetic state 
at finite temperature is impossible in either one or two dimensions. To cto 
this, we note that V(k, T)as defined in (46) satisfies the inequality V(k, T) ~ 1 
for all values of  k and T for both positive and negative exchange constant J. 
This inequality, when used in (55), leads to the results 

Tc- :  7 'c ,  TN - ~N (58) 

which in view of  the known wdues of  "I'N and ~'c,  implies consistency with 
the theorem of Mermin and Wagner. 

We now estimate the change in the thermal properties arising due to the 
quantum effects which were neglected in the classical limit presented in 
Section 4. The V(k, T) appearing in (46) may be expanded about ~ - 0. 
If we substitute this expansion into (44) and (45), we obtain 

and 

2S(S -t-- i)/3J = 31(h) -:- 2B-'J~y.l : .-- (59) 

2flJ~o f --= [ 7 , , l ( h ) h - ' - - I ] -  2t~2.1'-'7.f'3 -~ . . . .  (60) 

where/(h)  is the lattice sum, 

l(h) = ( I ! N ) ~  [h/(y. - It),,.)] (61) 
I," 

and 

17 /Tg (62) 
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A comparison of (44) and (45) with (24) shows that we have retained terms 
to order/,co;<2),~ in the expansion gicen in (59) and (60). It should be recalled 
that the exact zero, first, and second moments of the relaxation function 
R.~(k ,  t )  have been used as bour.dary conditions on our Green's function fit 
t -- 0, as is reflected in (16) and (19). Higher moments have not been included 
in (59) and (60) since these are not correctly given by the relax~ltion function 
as given in (21), which conta:.ns only two frequencies. The contributions 
from these higher moments to the thermodynamics is sin:ill except possibly 
for S = ~ systems with a small number of near neighbors l\w temperatures 
near the critical temperature in the three-dimensional case. We may rearrange 
(60) to obtain 

2 [ 3 J y o f - -  [~,oI(h)h-- ' - -  1] (I ~- ~t3J )"  (63) 

Furthermore, we obtain 

2 S ( S  .P l)[3J -= 31(h)/{ l  - -  [25'(5-F-1)]--' [7,,l(h)h ' - I](1 i- :]#~J)-'l (64) 

upon the substitution of (63) into (59). In order to motivate one further 
approximation, we write the term (1 -:-,~flJ) which appears in both (63) 
and (64) as 

(1 d - , } f l J )  ---- ~1 --  [1"c1(I)/6S(S -~- I ) T ] }  (65) 

with the aid of (54) and (61). Eqtiation (65) indicates that (59) and (60), 
~hen expressed as a series in "~c/T, will also be a series in inverse powers of 
S ( S  i 1). The same rcsults apply to (63) and (64), which are derived from 
(59) and (60). If we now compare (63) and (64) with the aid of (65), we see 
that the denominator of (64) contains higher terms in inverse powers of 
S ( S - ! - - 1 )  than does (63). We therefore make the luther approximation of 
replacing (64) by 

2S(S- -F  l)/3J :.~ 3I(h) /{ !  - -  [2S(S  ', I)] J[y , , l (h)h -~ --  t]} (66) 

so that (66) reflects the same level .of approximation as does (63) in inverse 
powers of S(S -- 1). 

In the remainder of this paper, (63) and (66) will be used to describe 
the high-temperature region of the Hciscnberg paramagnet. The high- 
temperature region is defined as the entire paramagnetic region for three- 
dimensional paramagnets which undergo either a (ur ie  or a Ndcl transition. 
For one- and two-dimensional paran;agncts as well as those three-dimen- 
sional paramagnets that do not undergo a N6el transition when J is negative, 
we define the high-temperature region to be the temperature range above 
the Curie-Weiss temperature defined by 

Ocw = 2 ; J : y o S ( S  :- I)i3kB (67) 
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A comparison with experiment ~,ouid require use of analytical cxpressions 
for the Watson sums l(h), 13'~.:r+.:~'J- TM to obtain the self-consistency parameters 

l a n d  h appearing in (63) and (66). I.lowever, we are primarily intcrested in 
making a comparison with exactly kno~s-n properties of the Hcisenberg 
model to test the validity of  the statistical approxinaations u.~ed in this 
paper. The bulk of the theoretical knowledge related to the Heisenbcrg 
paramagnet is contained in the l /T  series expansion results and restllts 
deduced from these series by P-td6 approximations. ~a:','~'~,'~'~.~' :,o~ In thc next 
section, we shall express the solutions Ibr the specific heal anti susceptibility 
deduced from (63), (65), and (a2) as a series expansion in po~crs of 1/T 
which may be compared with the exact results. 

Before proceeding to the I /T series, we examine the predicted Curie 
and N6el temperatures as well as values of the nearest-neighbor correlation 
functions at the critical temperature. We will show that the unphysicaI 
results obtained by Liu in the RPA tbr the S ~ simplc cubic paramagnet 
in which the energy predicted at the critical temperature was Io~er than the 
ground-state energy disappears when the quantum effects present in (63) 
and (65) are taken into account. 

Using the fact that 

i(h) - . . . . .  1(--..-h) (68) 

for lattices that are decom)osable into twt) interpenetrating sublattices 
with the property that nearest-neighbor .~ites always lie on separate sublattices, 
one finds from (66) with I h .~ 1 that the Curie and Ndcl temperature are 
given by 

!)--:_Lt Tc=~ T~ : 7"c(1 -- (69) 
2S(S 1 \ ) ! 

so that the Curie and N6el temperatures arc in agreement to order 1 .'S(S 1 ). 
Equation (69) is in disagreement with the prcdictions of Rushbrooke and 
Wood given in (57). One needs the following values of/('1) 

i 0.2527 (st) 
I( I ) ..... '. 0.1742 (bcc) 

I0.1122 (fcc) 
(70) 

for the simple cubic, body-centered cubic, and face-centered cubic lattices 
in order to compare our predictions for the Curie and Neel temperatures 
with the predictions of  Rushbrooke and Wood, ':3~',3+~ which are given by 
(57) and 

T~ w = 5J(~'cl-- 1)[IIS(S - I ) .  l].96kr~ (71) 
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Table I. Predictions for the Curie and N+el T e m p e r a t u r e s  ~ 

Curie Ndel Curie NdeI Curie Ndcl 
i,atticc method S .... .~ S : - . t  S I S :, 1 S 52 S = 5,2 

Simple-<ubic 

I , T S c r i c s  <a';,:mj 0.629 0.717 0.683 0.719 0.709 0.718 
R PA (~ J 0.660 0.660 t ). 060 0.660 0.660 0.660 
Present theory 0.433 0.433 0.575 0.575 0.641 0.641 

Body-centered cubic 

l : T Series ~a~'~ 0.661 0.730 0.735 0.764 0.744 0.750 
RPA '6~ 0.718 0.718 0.71S 0.718 0.718 0.718 
Present theory 0.530 0.530 (~.647 0.647 0.702 0.702 

Face centered cubic 

1 T Series ~a6'3~ 0.692 None 0.752 None 0.780 None 
1: T Series ~'~ 0.679 None 0.747 None .... None 
RPA <̀u 0.743 None 0.743 None 0.743 None 
Present theory 0.571 None 0.679 Ntme 0.728 None 

i 

a Tabulated temperatures are multiples of the Curie-A, Veiss temperature, 0cw .... 
2")'0 I J S ( S  -T l),'3kB. 

Tab l e  I gives a c o m p a r i s o n  of  o u r  predic t ions  for the Cur ie  and  Ndel 

t empe ra tu r e  with bo th  R P A  and  I / T  series predict ions .  O u r  predic t ions  are  

un i fo rmly  lower t h a n  the  1/7" series est imates.  

We  n o w  cons ide r  prediction,,; tor the nea res t -ne ighbor  s p i n - s p i n  

co r re l a t ion  func t ion  predic ted  by  o u r  G r e e n ' s  func t ion  theory  at the crit ical  

t empera tu re .  We  o b t a i n  

( S o  �9 ~ , ~ F  ~ , a / c  = -+-3kBTc[?o/(l)  I)].2 .l [ ?,,(I J- J i/3k[3Tc) t"72,+ 
N 

u p o n  the s u b s t i t u t i o n  o f  (69) in to  (63) with the use o f  (68). "l'hcsc values  arc 

cons ide rab ly  lower  than  the RPA values o f  Liu, which are given by 

/ S o "  Sa )c  aPAL : - - ( S o  �9 oa/-+ ~ " RPAL 5;(S I){I [1/';%/( I )]} (73) 

O u r  values  of  ( S  O �9 S, t )c  are  m u c h  clo~cr Io the 1;'1 + scrie~ valuc~ of  D o n . b  

and  Sykes tz+'l t h a n  the  R P A  values  o t  l+iu, a~ muy be seen by an e x a m i n a t i o n  
o f  Tab l e  1 I. 

We t ind tha t  the power  laws it. the critical region are the same as I+or the 
R P A  theory  and  the spherical  model  a l though  the numer ica l  value~ of  the 
coefficients change  somewha t ,  as Js evidenced by the change  in the crit ical 
t e m p e r a t u r e  and  cri t ical  va lue  o f  the nea res t -ne ighbor  cor re la t ion  func t i on  
ca lcula ted  above .  Since the  crit ical  behav io r  of  the spherical  model  is k n o w n  

to be incorrec t ,  we p u r s u e  the  ma t t e r  no  further .  

82z17/z-+ 
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Critical Values of the Normalized Nearest.Neighbor 
Correlation Function (S 0 �9 Sol)IS z 

Curie Ndel Curie Ncct Curie Ndel 
Lattice method S = - , }  S -- .t, S I S - I S :-: co S ,: oo 

Simple cubic 

RPA (Liu) I'~l 1,02 - l . t , 2  0.68 --0.68 0.34 --0.34 
Prcsent theory 0.53 -0 .90  0.55 -0 .64 0.34 - 0.34 

Body-centered cubic 

RPA (Liu) Is~ 0.84 ---0.84 0.56 -0 .56  0.28 --0.28 
Prescnt theory 0.54 --0.74 0.48 --0.54 0.28 .... 0.28 

Face-centered cubic 

RPA (Liu) I~ 0.77 None 0.51 None 0.26 None 
Present theory 0.54 None 0.46 None 0.26 None 
1. "1' Series r 0.45 None 0.34 None 0.19 None 

6. lIT S E R I E S  R E S U L T S  

It is useful  to  i n t r o d u c e  the  no t a t i on  

J = 2 J S "  

K = ],;kB'l" 

and  

(74) 

(75) 

X -  S ( S - ~ -  I) (76) 

so tha t  the  H a m i t t o n i a n  given by (7) n o w  becomes  

H . . . . . .  ( ] / 2 S " )  ~ St  �9 S~...e (77) 
I.d 

It is eas ier  to  assess the q u a n t u l n  efl'ccts as a func t ion  o f  S with  the last 

f o r m  o f  the  H a m i l t o n i a n ,  for  ~.hich the f e r romagne t i c  g r o u n d  state is 

i n d e p e n d e n t  o f  S for  fixed j and  for which the Cur i e  t e m p e r a t u r e  depends  

on ly  weak ly  on S for  a fixed va lue  o f  J. E q u a t i o n s  (63) and (66) b e c o m e  

f ----- S Z [ y o l ( h i h  " - .  I]/Ke[1 : ( v K / 6 S " ) ]  (78) 

and  

K = 3 S " X -  ' l (h) / . i  I - .  ~r[ - / , ) l (h )h  ' -- I)./X]j (79) 

w h e n  use is m a d e  of  (74)-(76).  We have i n t roduced  the var iab le  t>, which is 

equa l  to  unity.  T h e  reason  we i n t r o d v c e d  t: is that  if one  sets c �9 0, one  

r ecovers  the I / T  series so lu t ion  for  the classical  l imit  discussed in Sect ion  4. 
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We are therefore able to get I i F  series cxpre.~sions for both the spherical 
model and the RPA model of  Liu as well as the I /T  series expressions for 
the quan tum limit o f  our  mode!. 

Notice that (79) gives h as a function of  spin and temperature. So long 
as ' h i < 1, we can expand (61) to obtain 

l(h) = ),0 h-1 ~ Wilt" (80) 
;'1 ( I  

where 

w.  -. N-' ~ (yUyo)" (81) 
I," 

The lattice sums given in (81) may be h~terpreted with the aid of  (20) as the 
probabili ty o f  returning to the starting point after n random steps between 
nearest-neighbor spin sites. The~e valucs are easily obtained on a computer  
and are given in Table irll for several lattices. 

Combining (79)-(81) and inverting the series, we obtain 

, ' t .  

h = ~ A~ (82) 

where the first four coefficients are given by 

Al = Xyo/3, Az .= 0, ,-Is -: �9 )(:~/oz(2X . -  t,)/54, 

A4 = XSToVs(2X t')/162 
(83) 

where V,~ is defined by 

V, -.- -j,,," W" (84) 

We can now obtain an explicit expression for f as a function o f  
temperature by substituting (82) and (80) into (78). The resulting expression 

Table I I I .  Probabilities W n ot Returning to Starting Point After 
n Steps Between Nearest-Neighbor Lattice Sites 

Lattice 14/0 If:., W~ W 4 

Linear i .1. 0 3..8 
Square i .i 0 9..64 
Simple cubic I I. 6 0 5,:72 
Face-centered cubic 1 1:12 I..'36 5/192 
Body--centered cubic 1 I :8 0 27 .512 

i i 



I | 4  Sam A. Scales and H .  A. Gersch 

is readily reduced to a lIT series in temperature. We write our prediction 
for the normalized nearest-neighbor correlation function as 

< S  o * S~,>GFIs 2 .... ~ B~tF(I ", S )  S -2nKl" .1 ( 8 5 )  

where one obtains our prediction for the classical Heisenberg model when 
v := 0 as well as the series expansion for the RPA theory of" Liti ~ and the 
spherical model of  Lax, la'l and where one obtains our prediction for the 
quantum Heisenberg model when ~,' : :  I. The coefficients B,,C~v'(z,., S) are 
given in Appendix A, where they are compared with the exact results t361 
B,,E(I ", S). 

Upon substituting (62) and (72) into (42) and setting k = 0, we obtain 

Xo = S ~ h / J T , , (  I .... h )  (86) 

for the susceptibility. Finally, we obtain after substituting (82) into (86), an 
expression for the susceptibility as a function of inverse temperature. We 
denote our prediction for the series as 

r. 

3k, Tx~v/S(S-.'- 1 ) -  ~, I)~F(V, S) S ~"/<" (87) 

r~GFt S) are given in Appendix B and are compared where the coefficients ~,,  ,v, 
with the exact coefficients obtained by Brown and l,ultingerJ ~ Again, one 
obtains predictions for the classical Heisenberg model when v - : - 0  and 
predictions for the quantum Heisenberg model when u :-- 1. Equation (87) 
also gives the exact 1/T series for ti,e RPA theory when r --= 0 as well as the 
exact t/T series for the spherical model of Lax ~:~'-'~ due to the relations 
established in Section 4. 

Notice in Appendices A and B that our I/T series coefficients for the 
classical and quantum Heisenberg models are related in precisely the same 
way as the exact lIT series for the classical and quantum Heisenberg models. 
The coefficients with subscript n are polynomials in the variable X of degree n 
in the quantum case, whereas the coefficients in the classical case contain 
only the term in the polynomial containing the highest power of  the variable 
X. We use this rigorous relation to establish that by setting V(k, T) in (46) 
equal to unity, we do indeed obtain the classical limit of our theory ~hich 
was tentatively assumed in Section 4-. 

We have given arguments for the necessity for a second-order truncation 
in the paramagnetic region of a tleisenberg magnet in the absence of a 
magnetic field. This truncation, which incorporates the exact values for the 
zero, first, and second moment~ of the relaxation function as boundary 
conditions, yields results which satisfy the rotational symmetry of the 
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paramagne t ic  region and the prlnciplc o1" detai led balance. The classical 

l imit o f  our  theory  yields results for the equal t ime sp in-sp in  corre la t ions  
in the field-free pa ramagne t i c  region which are identical to the results o f  both 
the spherical  model  and the RPA theor3, of  Liu. Quan tum correct ions  to both 
the Curie  and Ndel t empera tures  as well as critical values o f  the nearest- 
ne ighbor  corre la t ion  funct ion are found. Our  expressions for the svscepti-  

bility and internal  energy are expanded  in pow.ers of  the inverse t empera ture  
and the results are c o m p a r e d  with the exact series. 

A P P E N D I X  A 

The neares t -ne ighbor  sp in-sp in  correla t ion coefficients B~,;r(; -, S )de f ined  
by (85) and discussed in Section 6 :lre compared  below ~sith the exact 
coefficients, denoted  by Br, E(V, S), which were deduced from the coefficients 

o f  Rushbrooke  and Wood .  ~an~ 

Linear:  

Square:  

S imple  cubic:  

B2 E = X2/3,  Ba e - - 0 X  a --  vXZ/12, 

Ba L" = X 2 ( - - 3 X  2 --  8~'X t 31:)/135 

e~;~. _ x , / 3 ,  8~ ;~ _ 0 . v ~ _  , , x ~ / i 8 ,  

Bp F = X z ( - - 5 X  z -  lOt 'X- .  1.25v)/135 

B2 E = Xz /3 ,  Ba E .-= 0X 3 ._ t,X2/12, 

B4 e - -  X2(7X 2 -  18t'X .... 3t)/135 

B p  F = x = / 3 ,  a . 2  F ::~ o x  3 - -  L,X', 'I8,  

B p  F = XZ(5X  2 - -  20e'X ..... 1.25r)/I 35 

B2 r = X2/3,  /-ca E := OX a .... vX2/12, 

B4 e = X2(17X 2 -  28v,Y --  3v)/135 

B ~  ~ = X2/3, ~anc'v --  OX a -- ~X'~/I 8, 

B~ F ----- X2(15X ~ -  30t'X i 1.25L')/135 
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Body-cen tered  cubic: 

B2 e = X ~ / 3 ,  B.~ F - OX 3 .... vX"/12,  

B4 e = Xz(57X 2 -  38vX  --  3v)/135 

B~ F _.-: Xz/3,  13~ v : :  OX 3 - -  vX2/18, 

B4 GF = X 2 ( 5 5 X  2 -  4 0 v X  -: 1.25v)/135 

Face-centered cubic:  

Bz z - -  X2/3, B:f  ::: (4X~/'9) - (vX'~/12), 

Ba r = X2(I07X 2 - -  78vX-] -  3v)/135 

B~ v : X2/3, B~ F --  ( 4 X a / 9 ) - - ( v X " / 1 8 ) ,  

B ~  F = X 2 ( I 0 5 X  ~- - -  70vX 1.25t:)/135 

A P P E N D I X  B 

The  suscept ibi l i ty  coefficients DC, f ( v ,  S )  dci ined by (87) and  discussed 
in Sect ion  6 are c o m p a r e d  with ~he exact coefficients, deno ted  by D,fi(v, S), 

which  we deduced  f rom the coefficients o f  Brown and  L u t t i n g e r / s ~  

Linear:  

D o e =  1, D le  =:= 2)(/3, 

DofF --- - I, O ~  v :-: 2X/3 ,  

Square:  

Do r : 1, D1E :.= 4X/3 ,  

Do G~ ----- 1, D ~  F = 4X/3,  

S#nple  cubic: 

Do E =  1, Dx ~ =  2X, 

Do cF := l ,  ~lt~c~F = 2X, 

Body-cen tered  cubic: 

Do e : 1, D f  = 8X/3, 

D~ v = l,  D ~ v =  8X/3,  

D,, F" -- ( 2 X " / 9 ) - -  (vX/6) 

D~ w =- (2Xe/9)  ..... (vX/9) 

D., e . (4)(",'3) - (vX/3) 

D~"  (4X~/3) - - ( 2 v X / 9 )  

D2 +: - (10X'-'/3) --  (vX/2)  

"z : fl0XZ/3). .... (cX;'3) 

D~'- (56X2i9) (2vX'i3) 

D~ w .... (56XZ:9) -- (4cX/9)  
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Face-centered cubic 

Do e - -  1, DI v = 4X,  D2 E = ( 4 4 X 2 / 3 ) - -  t 'X 

DG~ 1, D~  ~ ,= 4X ,  wC;V ( 4 4 X 2 / 3 ) - -  (2vX/3)  
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